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The Cancer Detection Problem
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Cancer Fates in the United States
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Approximately 1.3 x 106 Non-Skin Cancers Diagnosed
Each Year  in the U.S.
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The Nanotechnology Solution
Requires the Synergy of:

Engineering: Intraoperative Near-Infrared 
Fluorescence Imaging System

Chemistry:  Highly Sensitive, Properly-Sized, 
and Stable Near-Infrared Fluorescent Contrast 
Agents (Quantum Dots)



Near-Infrared Fluorescent Surgical Imaging System
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† Nakayama et al., Mol. Imaging, 2002; 1(4): 365-377



Mobile Large Animal Intraoperative Imaging System
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† DeGrand & Frangioni, Submitted



Deployment in the Surgical Suite
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† DeGrand & Frangioni, Submitted



The Surgeon’s View

† DeGrand & Frangioni, Submitted



Fluorescent Semiconductor Nanocrystals (Quantum Dots)
M.G. Bawendi and S.J. Kim (MIT)

Organic Coating
Shell

Core

3 - 20 nm (Determines BioD)

Potential Advantages Potential Disadvantages
Peak emission tunable anywhere from UV to IR Potential toxicity of materials
High non-aqueous QYs Difficult to synthesize
Broadband absorption increasing to the blue Size/material limitations (?solved)
High photostability
Conjugatable to tumor targeting ligands



Modeling of Near-Infrared and Infrared Photon Transmission
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† Lim et al., Mol. Imaging, 2003; 2(1): 50-64



Infrared (1320 nm) QDs vs. NIR (840 nm) QDs
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Near-Infrared Fluorescent (Quantum Dots)

IRDye78-CA NIR QDs
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Sentinel Lymph Node Mapping with 860 nm Quantum Dots
(15-20 nm hydrodynamic diameter)

Pig Femoral Lymph Node Model

200 µL of 2 µM Solution (400 pmol) of CdTe(CdSe)
QDs in PBS Injected Intradermally

Movie



Immediate Clinical Applications of NIR QDs

• Image guidance during sentinel lymph
node mapping

• Image guidance during cancer resection

• Image guidance for avoidance of critical 
structures (e.g., nerves and blood vessels) 
during general surgery

• High sensitivity tool for surgical pathologists
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We have the clinical need.

NIBIB has funded the science.

We now have the 
nanotechnology solution.

But, can NIR and IR Fluorescent 
Quantum Dots ever be Translated

to the Clinic?



Summary of Quantum Dots for In Vivo Applications
Emission Hydrodynamic

Type Material Molar Ratio Range(nm) Diameter (nm)
I CdSe Cd:Se=1:1 480-650 2.6-9.8
I CdTe Cd:Te=1:1 580-740 4-12
II CdTe(CdSe) Cd:Te:Se=1:x:(1-x) 700-1100 4-16
I InAs In:As=1:1 800-1300 2-7
I PbSe Pb:Se=1:1 1100-2200 2.5-10
I InP In:P=1:1 600-730 2-5
I HgS Hg:S=1:1 500-800 1-5
I CdHgTe Cd:Hg:Se=x:(1-x):1 750-1100 6-12
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Emission Hydrodynamic
Type Material Molar Ratio Range(nm) Diameter (nm)
I HgSe Hg:Se=1:1 660-1600 4-6
I HgTe Hg:Te=1:1 660-1960 5-8
I PbS Pb:S=1:1 950-2060 4-8
I PbTe Pb:Te=1:1 780-2100 4-8
I InSb In:Sb=1:1 650-1330 8-12
I GaAs Ga:As=1:1 640-830 6-14
I GaSb Ga:Sb=1:1 800-1390 6-12
II ZnTe(CdS) Zn:Cd:Te:S=x:y:x:y 630-940 4-16
II ZnTe(InAs) Zn:In:Te:As=x:y:x:y 660-1000 4-16
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Summary of QD Possible
Semiconductor Routes of

Materials Administration
Antimonide Intravenous

Arsenide Intraperitoneal
Cadmium Subcutaneous
Gallium Subdermal
Indium Intravaginal
Lead PO

Mercury Per-rectum
Phosphide Intravesical
Selenide Aerosol
Sulfide

Telluride
Zinc



Unresolved Regulatory/Toxicity Issues

Will QDs be regulated as devices or drugs?

Will QDs be regulated based on their
chemical form (i.e., salts), or as individual metals?

Does route of administration matter or do
individual materials prevail?

Special design of toxicity studies?

Disposal of medical waste containing QDs



What We Need as Investigators

Guidance regarding “acceptable” materials or
early indication that translation to the clinic

is not possible

Assistance with the design and implementation
of toxicity studies

Interagency cooperation regarding issues of
drug delivery and disposal of QD-

containing biological material
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